Arterial impulse model for the BOLD response to brief neural activation
نویسندگان
چکیده
The blood oxygen level dependent (BOLD) signal evoked by brief neural stimulation, the hemodynamic response function (HRF), is a critical feature of neurovascular coupling. The HRF is directly related to local transient changes in oxygen supplied by cerebral blood flow (CBF) and oxygen demand, the cerebral metabolic rate of oxygen (CMRO2). Previous efforts to explain the HRF have relied upon the hypothesis that CBF produces a non-linear venous dilation within the cortical parenchyma. Instead, the observed dynamics correspond to prompt arterial dilation without venous volume change. This work develops an alternative biomechanical model for the BOLD response based on the hypothesis that prompt upstream dilation creates an arterial flow impulse amenable to linear description. This flow model is coupled to a continuum description of oxygen transport. Measurements using high-resolution fMRI demonstrate the efficacy of the model. The model predicts substantial spatial variations of the oxygen saturation along the length of capillaries and veins, and fits the varied gamut of measured HRFs by the combined effects of corresponding CBF and CMRO2 responses. Three interesting relationships among the hemodynamic parameters are predicted. First, there is an offset linear correlation with approximately unity slope between CBF and CMRO2 responses. Second, the HRF undershoot is strongly correlated to the corresponding CBF undershoot. Third, late-time-CMRO2 response can contribute to a slow recovery to baseline, lengthening the HRF undershoot. The model provides a powerful mathematical framework to understand the dynamics of neurovascular and neurometabolic responses that form the BOLD HRF.
منابع مشابه
A CBF-based event-related brain activation paradigm: characterization of impulse-response function and comparison to BOLD.
A perfusion-based event-related functional MRI method for the study of brain activation is presented. In this method, cerebral blood flow (CBF) was measured using a recently developed multislice arterial spin-labeling (ASL) perfusion imaging method with rapid spiral scanning. Temporal resolution of the perfusion measurement was substantially improved by employing intertrial subtraction and stim...
متن کاملDiscrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients.
The blood-oxygen-level-dependent (BOLD) signal measured in the brain with functional magnetic resonance imaging (fMRI) during an activation experiment often exhibits pronounced transients at the beginning and end of the stimulus. Such transients could be a reflection of transients in the underlying neural activity, or they could result from transients in cerebral blood flow (CBF), cerebral meta...
متن کاملA Model for Transient Oxygen Delivery in Cerebral Cortex
Popular hemodynamic brain imaging methods, such as blood oxygen-level dependent functional magnetic resonance imaging (BOLD fMRI), would benefit from a detailed understanding of the mechanisms by which oxygen is delivered to the cortex in response to brief periods of neural activity. Tissue oxygen responses in visual cortex following brief visual stimulation exhibit rich dynamics, including an ...
متن کاملCombined MEG and fMRI model
An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...
متن کاملSource of nonlinearity of the BOLD response revealed by simultaneous fMRI and NIRS
The nonlinearity of the blood oxygenation level-dependent (BOLD) response to stimuli of different duration, particularly those of short duration, has been well studied by functional magnetic resonance imaging (fMRI). This nonlinearity is assumed to be due to neural adaptation and the nonlinearity of the response in the oxygen extraction fraction (OEF); the latter has not been examined quantitat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 124 Pt A شماره
صفحات -
تاریخ انتشار 2016